谢红献


一、基本情况

谢红献,男,教授,博士生导师。钢铁研究总院博士,日本大阪大学博士后。主要用计算模拟方法从原子层次研究金属结构材料的塑性变形微观机制。研究材料的微观缺陷(空位,间隙原子,位错,孪晶,晶界,相界,微裂纹)的产生,运动,以及它们之间的相互用规律及其对宏观力学性能的影响探讨结构材料宏观力学性能和其微观结构的关系研究核聚变堆辐照效应对金属材料力学性能的影响以及金属材料的应力诱导相变问题。

近年来,获得多项各类基金支持。主持国家自然科学基金面上项目3;以主要成员身份参与国际可控热核聚变ITER专项,并联合其他单位承担科技部重大专项1,国家重点基金1项,以及多项省部级课题。近年来在本领域国际重要期刊 Acta Materialia; Scripta Materialia; Nuclear Fusion, Applied Physics Letters等期刊上以第一作者或通讯作者发表SCI检索论文70余篇,在相关领域全国性大会上做过多次邀请报告。

二、 博导所属学科

机械工程

研究方向一:金属材料微观结构与力学性能

研究方向二:核能材料的辐照效应

研究方向三:磁性材料微观结构及性能

三、 硕导所属学科

1、 机械工程

研究方向一:金属材料微观结构与力学性能

研究方向二:核能材料的辐照效应

研究方向三:磁性材料微观结构及性能

2、力学学科

研究方向一:金属材料微观结构与力学性能

研究方向二:核能材料的辐照效应

研究方向三:磁性材料微观结构及性能

四、主持、参与的科研及教研项目情况

1、国家自然科学基金-重点项目,体心立方金属辐照蠕变的位错雪崩机制与本构模型 2025.01-2029.12230万元,项目批准编号:52431005

2国家自然科学基金-面上项目,钨中非平衡晶界应力分布特征及其与辐照缺陷相互作用机理研究2024.01-2027.1253万元,项目批准编号:12375269

3国家自然科学基金-面上项目,应力环境中金属WFe晶体缺陷处氦泡的生长机理研究(2019.01-2022.1266万元,项目批准编号:11875015

4、国家自然科学基金-面上项目,应变速率诱导金刚石纳米线及FCC金属纳米线的相变机制研究2016.01-2019.1274.4万元,项目批准编号:51571082);

5国家重大专项子课题,辐照初级损伤结构与氢氦效应(2018.11-2023.11. 15万元,项目批准编号:2018YFE0308101

6河北自然基金面上项目,核聚变堆材料钨和铁的晶体位错处氦泡的生长机理研究2019.01-2021.1210万元,项目编号:A2019202196);

五、近年来发表代表性论文情况(仅限第一作者或通讯作者),

[1]Hongxian Xie*, Tingting He, Gaobing Wei, Wei Fang, Shigenobu Ogata, Guang-Hong Lu, A new criterion for formation capability of annealing twin in face-centered cubic metals/alloys, Acta Materialia, 2024, 278:120245.

[2]Gaobing Wei, Hongxian Xie*, Jun-Ping Du, Tingting He, Guanghong Lu, Shigenobu Ogata, Disconnection units of twinning in body-centered-cubic metals, Acta Materialia, 2024, 280:120325.

[3]Hongxian Xie*, Liuhui Sun, Tingting He, Guang-Hong Lu, The effect of migrating Σ3 {112} incoherent twin boundary on radiation tolerance of nanotwinned copper, Acta Materialia, 2024, 266:119668.

[4]Hongxian Xie*, Gaobing Wei, Jun-Ping Du, Akio Ishii Guanghong Lu, Peijun Yu,Shigenobu Ogata, Shuffling pathway of anti-twinning in body-centered-cubic metals, Scripta Materialia, 2024,246:116083.

[5]Yuanfang Lu, Hongxian Xie*, Guang-Hong Lu, Molecular dynamics simulation study of void collapse mechanisms in cubic metals under shock compression, Journal of Nuclear Materials 2024,595:155054.

[6]Jingxiao Ren, Hongxian Xie*, Fuxing Yin, Guanghong Lu, The channeling effect of symmetrical tilt grain boundaries on helium bubbles in tungsten, Journal of Nuclear Materials 2023,586:154701.

[7]Gaobing Wei, Hongxian Xie* and Guang-Hong LuCrystallographic orientation dependent unconventional twinning pathway at the crack tip of body-centered cubic tantalumPhilosophical Magazine, 2023,103:1442-1452.

[8]Yuncheng Li, Hongxian Xie*, Dong Zhen, Orientation effect on twin formation mechanisms of tungsten under uniaxial tension/compression, Materials Today Communications, 2023,36:106790.

[9]Zexuan Wang , Hongxian Xie*, Guang-Hong Lu, The effect of screw dislocation on Helium Bubble growth in Tungsten: molecular dynamic simulation study, Computational Materials Science 2023,230:112457.

[10]Jingxiao Ren, Hongxian Xie*, Fuxing Yin, Yuanfang Lu, Guanghong Lu,The channeling effect of symmetrical tilt grain boundaries on helium bubbles in tungsten, Journal of Nuclear Materials, 2023,586:154701.

[11]Zhenzhong Zhou, Hongxian Xie*, Guang-Hong Lu*; Interaction between disclinated nonequilibrium grain boundaries and radiation-induced interstitial/vacancy in tungsten, Nuclear Fusion, 2022, 62: 126031.

[12]Tingting He, Hongxian Xie*, Gaobing Wei , Guang-Hong Lu*An atomistic study of the thermal and anti-thermal behavior of incoherent twin step migration under an elastic energy driving forceComputational Materials Science 2022,214:111748.

[13]Qing-Yuan Ren, Yu-Hao Li, Ning Gao, Wei-Zhong Han, Yu-Ze Niu, Hongxian Xie, Ying Zhang, Fei Gao, Guang-Hong Lu, Hong-Bo Zhou, Revealing the synergistic effect of invisible helium clusters in helium irradiation hardening in tungsten, Scripta Materialia, 2022,219:114850.

[14]Jingxiao Ren, Hongxian Xie*, Fuxing Yin, Yuanfang Lu, Guanghong Lu, Influence of grain boundaries on the loop-punching mechanism and shape of helium bubbles in tungsten, Materials Today Communications, 2022, 32, 104075.

[15] Kai Chen, Hongxian Xie*, Yanhui Qie, Huiqiu Deng, Molecular dynamics simulation study of helium bubble growth on W/Ta semi-coherent interface, Journal of Nuclear Materials, 2022,558:153340.

[16] Xindong Li, Jingxaio Ren, Yuanfang Lu & Hongxian Xie*, Progress in Simulation of Helium Bubble Growth in Body-centered Cubic Tungsten and Iron, Atomic Energy Science and Technology, 2021,55: 50-61.

[17] Gaobing Wei, Hongxian Xie*, Fuxing Yin, and Guanghong Lu, Twinning mechanism asymmetry in body-centered cubic tantalum under [001] uniaxial compression/tension, Physical Review Materials, 2021,5, 123604.

[18] Hongxian Xie*, Gaobing Wei, Yuanfang Lu, Junping Du, Fuxing Yin, Guang-Hong Lu, and Shigenobu Ogata, Driving force of zero-macroscopic-strain deformation twinning in face-centred-cubic metals, Philosophical Magazine, 2021,101, 2318-2330.

[19] Hongxian Xie*, Tong Ma, Tao Yu, Fuxing Yin, Body-centered-cubic to face-centered-cubic phase transformation of iron under compressive loading along [100] direction, Materials Today Communications, 2021,26, 101961.

[20] Yuanfang Lu, Hongxian Xie*, Fuxing Yin, Guang-Hong Lu, Shock response of He bubble in single crystal tungsten: molecular dynamics simulation study, Journal of Nuclear Materials, 2021,556, 153165.

[21] Tong Ma, Hongxian Xie*, Formation mechanism of face-centered cubic phase in impact process of single crystal iron along [101] direction, Acta Physica Sinica, 2020,69:130202.

[22] Hongxian Xie*, Zeze Mu, Guang-Hong Lu, Fuxing Yin, Atomistic simulation of interaction between wedge disclination and self-interstitial atom in bcc tungsten, Journal of Nuclear Materials, 2020,542, 152460.

[23] Jiayun Yu, Hongxian Xie*, Fuxing Yin & Tao Yu, Face-centered-cubic to body-centered-cubic phase transformation of Cu nanoplate under [100] tensile loading, Philosophical Magazine, 2019,99:2517-2530.

[24] Hongxian Xie*, Ke Xu, Guang-Hong Lu, Tao Yu, Fuxing Yin, Dislocation climbing mechanism for helium bubble growth in tungsten, Scripta Materialia, 2018,147, 98-102.

[25] Hongxian Xie*, Jiayun Yu, Tao Yu, Fuxing Yin, Face-centred cubic to body-centred cubic phase transformation under [100] tensile loading, Philosophical Magazine, 2018,98:1696-1707.

[26] Hongxian Xie*, Ning Gao, Ke Xu, Guang-Hong Lu, Tao Yu and Fuxing Yin, A new loop-punching mechanism for helium bubble growth in Tungsten, Acta Materialia, 2017,141:10.

[27] Hongxian Xie*, Ke Xu, Guang-Hong Lu, Tao Yu and Fuxing Yin, Trapping of hydrogen and helium at an {110}<111>edge dislocation in TungstenJournal of Nuclear Materials,2017, 484, 270.

[28] Qing Feng, Xiaoyan Song, Hongxian Xie, Haibin Wang, Xuemei Liu and Fuxing Yin, Deformation and plastic coordination in WC-Co composite Molecular dynamics simulation of nanoindentation, Materials and Design, 2017,120:193.

[29] Ke Xu, Liang-Liang Niu, Shuo Jin, Xiaolin Shu, Hongxian Xie, Lifang Wang and Guang-Hong Lu, Atomistic simulations of screw dislocations in bcc tungsten: From core structures and static properties to interaction with vacancies, Nuclear Instruments and Methods in Physics Research B, 2017, 393:174.

[30] Hongxian Xie*, Tao Yu, Wei Fang, Fuxing Yin and Dil Faraz Khan, Strain-rate-induced bcc-to-hcp phase transformation of Fe nanowires, Chinese Physics B, 2016,25:126201.

[31] Hongxian Xie*, Xiaoyan Song, Fuxing Yin and Yongguang Zhang, Effect of WC/Co coherency phase boundaries on Fracture toughness of the nanocrystalline cemented carbides, Scientific Reports, 2016,6:31047.

[32] Wei Fang, Hongxian Xie*, FuxingYin, Jia Li, Dil Faraz Khan and Qian Fang, Molecular dynamics simulation of grain boundary geometry on crack propagation of bi-crystal aluminum, Materials Science and Engineering A, 2016,666:314.

[33] Hongxian Xie*, Fuxing Yin, Tao Yu, Guanghong Lu and Yongguang Zhang, A new strain-rate induced deformation mechanism of Cu nanowire: Transition from dislocation nucleation to phase transformation, Acta Materialia, 2015,85:191.

[34] Hongxian Xie*, Fuxing Yin, Tao Yu, Jiantao Wang and Chunyong Liang, Mechanism for direct graphite-to-diamond phase transition, Scientific Reports, 2014,4:5930.

[35] Hongxian Xie*, Fuxing Yin and Tao Yu, Strain rate induced graphitization of cubic diamond film, Applied Physics Letters, 2014,104: 031911.

[36] Hongxian Xie*, Tao Yu and Fuxing Yin, Tension-compression asymmetry in homogeneous dislocation nucleation stress of single crystals Cu, Au, Ni and Ni3Al, Materials Science and Engineering A, 2014,604:142-147.

[37] Hongxian Xie*, Tao Yu, Fuxing Yin and Chengchun Tang, The effects of crack orientation on the twin formation from the crack tip in γ-Ni3Al, Materials Science and Engineering A, 2013,580:99.

六、联系人:谢红献 hongxianxie@hebut.edu.cn